
Robot speech recognition 
This is going to be a rather involved chapter, but all of the concepts are fairly easy to understand 
and I was very happy with the results I achieved when I developed this chapter. We will end up 
with a lot of collateral abilities for our robot that we are getting for free, and will end up with a 
very strong framework to build voice recognition and commands upon. Let’s get right to it. 

 

What are we doing? 

We set several goals for our robot in Chapter 2, which included being able to give voice 
commands to the robot, since we may be using the robot without a base station. I also wanted the 
robot to be able to interact with my grandchildren, and specifically to be able to tell and respond 
to knock-knock jokes, a favorite activity of my grandson, William. 

We can break this process down into several steps, which we will be handling independently. 
We need the robot to be able to hear, or have the ability to convert sound into a digital form. We 
need to process sounds into words, which is to say, turn sounds into text. 

We need to not just recognize individual words, but to combine those words into sentences and 
from those sentences, infer the intent of the speaker to understand what the robot is to do. We do 
not want to use canned or memorized speech commands, but rather have the robot be able to do 
some natural language processing (NLP) to create a form of robot understanding of the spoken 
word. 

For example, if we want to have a command for pick up a toy, we humans could phrase that 
several ways: grab a toy, grasp a toy, pick up that toy car, or even get that. We want the robot to 
understand or at least respond to all of those utterances with the same action, to drive to the 
nearest toy and pick it up with the robot arm. 

The other half of the interface is that the robot needs to respond back by speaking. Text-to- speech 
systems are fairly commonplace today, but we would like to have some natural variations in the 
robot’s speech patterns to help make the illusion that the robot is smarter than it really is. 

Our steps for this chapter are as follows: 

1. Receive audio (sound) inputs. 

2. Convert those sounds into text that the robot can process. 

3. Use processing on those text words to understand the intent of the speaker. 

4. Use that intent as a command to perform some task. 

5. Provide verbal responses in the form of spoken words (text to speech) back to the operator to 
confirm the robot heard and understood the command. 

6. Create a custom verbal interface that both tells and responds to knock-knock jokes. 

 
Speech to text 

In the rest of this chapter, we will be implementing an AI-based voice recognition and response 
system in the robot and creating our own custom voice interface. We will be using Mycroft, an 
open source voice activated digital assistant that is adept at understanding speech and is easily 
extended for new functions and custom interfaces. 

The process we will use for voice interaction with the robot follows this script: 



1. Wake word (Hey, Albert) 

2. Pause for the robot to make a beep sound to show it is listening 

3. Command or query from human (move forward one step) 

4. Robot responds verbally (moving forward six inches) 

There are two forms of text-to-speech involved in this process that greatly simplify matters for the 
robot. First, the robot is listening continuously for only one sound – the wake word. This is a 
specific sound that just means one thing – get ready to process the next sound into a command. 
Why is this necessary? 

Since the robot has only a very small processor – the Raspberry Pi – it really does not have the 
sort of onboard compute power to run a robust speech-to-text (STT) engine. But it can run a 
simple sound recognizer that can listen for just one thing – the wake word. You are familiar with 
this from other voice command systems, such as Alexa or Siri, that also either use a special wake 
word or a button to have the interface pay attention. 

Once the wake word is received, the Raspberry Pi switches into record mode, and records the next 
thing we say. It then transfers that information to an online system, the Google Cloud Speed to 
Text system (the same thing that runs the Google Assistant). 

How does the robot recognize the wake word? The speech system we will be using, the open 
source system Mycroft, uses one of two methods. The first is a phoneme recognition system 
called Sphynx. What the heck is a phoneme? You can understand that words are made up out of 
individual sounds, which we roughly assign to letters of the alphabet. An example would be the p 
sound in the word pet or pick. We make the pppp sound by putting our lips together. The burst of 
sound we make is identifiable as a P sound – this is a phoneme. The word Albert has several 
phonemes – the A sound, (ah), the L sound, the B, the ER together (errrrr), and finally, the T. The 
letters we associate with the sounds – the ch in cherry, the er in Albert, are called graphemes, as 
they graphically represent these sounds. We could say that the speech-to -text problem is one of 
mapping these phonemes to graphemes, but we know that this is too easy – English has all sorts 
of borrowed words and phrases where the pronunciation and the spelling are far apart. 

The frontend of the Mycroft speech recognition process uses phonemes to recognize the wake 
word. You will find that it is quite sensitive. I had no problem getting the speech processor to 
receive the wake word from eight feet away. When we get to the setup section, we will change the 
default Mycroft wake word from Hey, Mycroft, to Hey, Albert. 

 

What is the other method for receiving the wake word? Mycroft can also use a trained neural 
network that has been taught to recognize entire words all at once by their spectral power graph. 
What is a spectral graph? Your voice sound is not one frequency of sound energy – it is a complex 
congregation of different frequencies produced by our mouths and vocal cords. If we spoke in 
pure frequencies, we would sound like a flute- pure tones at mostly one frequency. We can use a 
process called a fast fourier transform to convert a selection of speech into a graph that shows the 
amount of energy (volume) at each frequency. This is called a spectral plot or spectral graph. 
The low frequencies are at the left, and higher frequencies at the right. Most of human speech 
energy is concentrated between frequencies between 300 Hz and 4,000 Hz. Each word has a 
unique distribution of sound energy amounts in these frequencies, and can be recognized by a 
neural network in this manner: 



 

 

Both the phoneme method and the neural network method use spectral plots to recognize sounds 
as words, but the phoneme process divides words into individual sounds, and the neural 
network listens and recognizes the entire word all at once. Why does this make a big difference? 
The phoneme system can be developed to recognize any word in English without 
reprogramming or retraining, while the neural network has to be trained on each word 
individually, and hopefully by a lot of different speakers with a lot of different accents. 

Our next step after receiving the wake word is to record the next sounds that the robot hears. The 
Mycroft system then transfers that audio data over the internet to the Google online speech-to-
text engine (https://cloud.google.com/speech-to-text/). This is a quick way to resolve the 
problem of our little Raspberry Pi not having enough processing power or storage to have a 
robust speech recognition capability. 

What goes on the in the Google Cloud? The STT engine breaks the speech down into phonemes 
(sounds) and uses a neural network to assign the most probable graphemes (letters) to those 
sounds. The output would be spelled out more phonetically than want to receive. For example, 
the sentence How many ounces in a gallon? will come out HH AW . M EH N IY . AW N S AH Z . IH 
N . AH . G AE L AH N. (source: CMU Pronouncing Dictionary) How is this the case? What 
happened? These are the phonemes that make up that sentence. The periods indicate spaces 
between words. Now the system has to convert this into the words we are expecting. The STT 
system uses word rules and dictionaries to come up with the most likely conversion into regular 
words. This includes both expert systems (word rules) as well as trained neural networks that 
predict output words based on phonemes. 
We can call this step the language model. Our STT outputs the sentence How many ounces in a gallon? and 
sends it back to the robot, all in less than 2 seconds. 

So the robot receives the text How many ounces in a gallon? What do we do with it? Lets look at the 
sentence and break it down into its component parts, just like we did in grade school. The type of 
sentence is a question, as it starts with How. The subject of the sentence is How Many. The verb is 
are, which is implied in the form of the question (How many ounces are in a gallon). The object is 
ounces and the modifier (or adjective) is in a gallon. 

https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/


Intent 

The natural language processing we are doing has one aim, or goal. We are giving commands to 
our robot using a voice interface. Commands in English normally follow a sentence pattern, 
something like You – do this. Often the you subject of the sentence is implied or understood, and 
left out. We are left with statements like Clean this room, or Pick up those toys. The intent of these 
commands to to have the robot initiate a program that results in the robot picking up toys and 
putting them away. The robot and its processor have to divine or derive the intent of the user 
from the words that are spoken. What we want is for any reasonable sentence to have as it's 
meaning, You, robot, start your pick up toys process. 

Think of how many ways we can say that command to the robot. Here are some examples:  

• Let’s clean up this room 

• Put away the toys  

• Pick up the toys 

• Pick up all the toys  

• Clean up this room  

• Put those away 

• Put this away 

• Time to clean up 

What do these phrases have in common? They all imply the subject who is doing the action is the 
robot. There are no words like You, robot, Tinman to indicate to whom the command in intended. 
The word toys appears a lot, as does pick, clean, and put away. It is possible that we can just pay 
attention to those keywords to understand this command. If we get rid of all of the common 
conjunction and pronoun words, what does the list look like? 

• Clean room  

• Put toys 

• Pick toys  

•  Pick toys 

• Clean room 

•  Put away 

•  Put away 

•  Time clean 

An important concept for this chapter is to understand that we are not trying to understand all 
speech, but only that subset of speech that are commands that the robot can execute.That list is fairly 
short. The robot can only be told to pick up toys, drive around, move its arm, and stop. That is about 
it. 

A general solution to this voice recognition problem would be to have some ability to predict from 
the command given to the robot, the likelihood that intent of the user points to one command more 
than any of the others. You can see that in the case of the word clean, none of our other commands 
(drive around, move arm, or stop) relate to clean at all. Thus a sentence with clean in it most 
probably is associated with the pick up toys command. 

This process of deciding intent will be used later in this chapter to send commands to the robot. We 
will use an open source AI engine called Mycroft to accomplish this. 



Now we are going to jump right into programming the TinMan robot to listen and understand 
commands using a open source artificial intelligence package called Mycroft. Mycroft is a version 
of a digital assistant similar to Siri from Apple or Alexa from Amazon, in that it can listen to voice 
commands in a mostly normal fashion and interface those commands to a computer. We are using 
it because it has an interface that runs on a Raspberry Pi 3. Here we go. 

Mycroft 

Installing Mycroft on Rapsberry Pi 3. 

 

Hardware 

One of the few things that the Raspberry Pi did not come with is audio capability. It has no 
speakers or microphones. I found a quick and effective way to add that capability was to use an 
existing hardware kit that provided both a very high quality speaker and an excellent set of 
stereo microphones in a robot-friendly form factor. Note that this works only with the Raspberry 
Pi 3 board – it will not work with earlier Raspberry Pis. 

The kit is the Google AIY Voice Kit. The website is http://aiyprojects.withgoogle.com: 

 

I decided to use the Mycroft open source voice assistant software instead, which offered much of 
the same functionality but in a more user-friendly arrangement. We'll cover Mycroft in the next 
section after we get the hardware installed. 
You will not need any of the cardboard that came with the kit. Turn off the Pi, and install the 
Voice Hat to the top of the Raspberry Pi 3 circuit board. Be careful to line up the pins. 

The next step is to connect the speakers with the screw terminals. Connect the microphones via the 
JST connector. This is the connector on the top that has the five wires. That ends the hardware part 
of the setup. 

Turn on your Raspberry Pi 3 with the new speaker and microphone. Now we 

can dive into the software. 

We are going to get the software drivers for the Google AIY Voice Kit from the GiHhub site for the 

http://aiyprojects.withgoogle.com/
http://aiyprojects.withgoogle.com/
http://aiyprojects.withgoogle.com/
http://aiyprojects.withgoogle.com/
http://aiyprojects.withgoogle.com/


project. We will just be using the drivers, but we have to download the whole thing. 

Go to the Google AIY project Raspian GitHub site: https://github.com/google/ 

aiyprojects-raspbian , and input the following code:. 

Sudo apt-get update Cd 

Start the Pulse Audio daemon. You may need to reboot after this step: 

pulseaudio –D 

 

Go back to the home directory: 

cd 

 

Now we download the AIY project source code to our RasPi: 

git clone https://github.com/google/aiyprojects-raspbian.git voice- 

recognizer-raspi 

cd ~/voice-recognizer-raspi 

 

These scripts will install the audio drivers: 

sudo scripts/configure-driver.sh sudo 

scripts/install-alsa-config.sh 

Now we must reboot the Pi: 

sudo reboot 

After rebooting, we can test the sound set up by playing some sound: 

speaker-test –c2 

This will play some white noise from the speakers. You can also try the following: 

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/Front_Center.wav 

This will say the phrase Front-Center. If you don’t hear the sounds, try re-installing the drivers 

and rebooting, and also check your wires. 

Mycroft software 

While there are several ways to install Mycroft, we have to put Mycroft on top of the other 
software we have already. Since Mycroft has to get along with the ROS, and all of the artificial 
intelligence packages we installed, such as TensorFlow, Theano, and Keras, it is better that we use 
the git clone method to download the source code and build Mycroft on the Raspberry Pi: 

git clone https://github.com/MycroftAI/mycroft-core.git cd 

Mycroft-core 

bash dev_setup.sh 

Mycroft will create a virtual environment it needs to run. It also isolates the Mycroft package from 
the rest of the packages on the Raspberry PI. 

In order to get the Mycroft system to work in this manner, I also had to do one more step. The 

https://github.com/google/aiyprojects-raspbian
https://github.com/google/aiyprojects-raspbian
https://github.com/google/aiyprojects-raspbian
https://github.com/google/aiyprojects-raspbian
https://github.com/google/aiyprojects-raspbian
https://github.com/google/aiyprojects-raspbian
https://github.com/google/aiyprojects-raspbian


Mycroft system kept failing when I first tried to get it to run. It would quit or get stuck when I 
tried to start the debugger. In order to correct this problem, I had to recompile the entire system 
using the following steps: 

sudo rm -R -/.virtualenvs/Mycroft cd 

~/mycroft-core 

./dev_setup.sh 

Once that is done (and it took quite a while – as in several hours), you should be able to run the 

Mycroft system with the startup commands: 

./start-mycroft.sh debug 

You can start in debug mode or: 

./start-mycroft.sh all 

You can start in normal mode. 

You will probably be using debug mode quite a bit when you are developing your speech 
commands. 

Now test that Mycroft is working properly. When you first get Mycroft to run, it will want to be 
paired with your login account on the Mycroft web server. You need to set up a services account 
on the Mycroft website at http://home.mycroft.ai. Then the Raspberry Pi will give you a six-
letter code to put into the website under Devices (on the Hamburger menu on the far right hand 
side of the website). 

Once the robot is paired with the Mycroft server, it can transfer data back and forth. The wake 
word will start out being the default Hey, Mycroft. You can test that everything is working by first 
asking Hey, Mycroft, what time is it?. 

Mycroft divides its capabilities into skills that are each controlled by a separate script. The Time 
skill is totally self-contained inside the Raspberry Pi. The robot should give you a voice response 
that is replicated on the debug console. 

Next you can ask Mycroft a more advanced skill, like looking up information on the internet. Ask 
“Hey, Mycroft, how many ounces in a gallon?” Mycroft will use the internet to look up the answer 
and reply. 

For the next step, you can change the wake word on the Mycroft website to something more 
appropriate – we did not name this robot Mycroft. We have been calling this robot Tinman, but 
you can choose to call the robot anything you want. You may find that a very short name like Bob 
is too quick to be a good wake word, so pick a name with at least two syllables. Go to the Mycroft 
web page (http://home.mycroft.ai) and log in to your account. If you have not yet created an 
account, now is your chance. 

Click on your name in the upper right corner and select Settings from the menu. You can select 
several settings on this page, such as the type of voice you want, the units of measurement, and 
time and date formats. What we want to do is change the wake word from the default (Hey, 
Mycroft) to the name of our robot (Hey, Tinman or Hey, Albert). Select the small text Advanced 
Settings in the third paragraph of the page. This will take you to the page where we can change 
the wake word. 

We change the first field Wake word to Custom. We change the next line to put in our custom 

http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/
http://home.mycroft.ai/


wake word – Hey, albert. We also need to look up the phonemes for this wake word. Click on the 
this tool hyperlink to be taken to the CMU Pronouncing Dictionary at Carnegie Mellon 
University. Put in our phrase and you will get out the phoneme phrase HH EY . AE L B ER T . 
The phoneme syntax puts periods to show the spaces between words. Copy and paste this phrase 
and go back to the Mycroft page to paste the phoneme phrase into the Phonemes field. You are 
done – don’t change any of the other settings. Hit Save at the top of the page before you navigate 
away. 

You can test your new wake word back on the Rapsberry Pi. Start Mycroft up again in debug 
mode and wait for it to come up. Say your new wake phrase and enjoy the response. I have a 
standard test set of phrases to show Mycroft’s skill at being the voice of our robot. Try the 
following: 

 

 Hey, Albert. What time is it? 

 Hey, Albert. What is the weather for tomorrow?  Hey, 

Albert. How many ounces in a gallon? 

 Hey, Albert. Who is the queen of England? 

You should get the appropriate answers to these questions. Mycroft has many other skills that we 
can take advantage of, such as setting a timer, setting an alarm at a clock time, listening to music 
on Pandora, or playing the news. 

What we will be doing next is adding to these skills by creating our own that are specific to our 
room-cleaning robot. Then we can do the knock-knock jokes. 

Skills 

The first skill we will create is a command to pick up toys. We are going to connect this command 
to the ROS to control the robot. 

 

Dialogs 

Our first step is to design our dialog on how we will talk to the robot. Start by making a list of what 
ways you might tell the robot to pick up the toys in the playroom. Here is my list: 

• Let’s clean up this room 

• Put away the toys 

• Pick up the toys 

• Pick up all the toys 

• Clean up this room 

• Put those away 

• Put this away 

• Time to clean up 

• Who made this mess? 

You will note that there are several key words that are specific to the command to clean up the 

room. We have the word clean, of course. We have the phrase pick up, and away. We also have the 

words toys or toy, and finally mess. These key words will cue in the natural language processor, and 

allow some variation in the exact words used. 



Next, we write down what we want the robot to say back. We don’t want the same canned response 

each time; it would be good to have some natural variation in the robot’s responses. Here is my list 

of responses, with a variety of robot attitudes represented: 

• Command received – picking up toys. 

• I am glad to hear the grandchildren came for a visit. I will pick up now. 

• Picking up toys. 

• Message understood – toy pickup commencing 

• Toy pick up mode initiated. 

• Time to pick up toys. 

• Mary Poppins does not live here, so do not start singing 

• This is my job – picking up toys is what I do. 

• Toy pick operation start. Scanning for toys. Wow, there are a lot of toys! 

• Toys again? OK, I have got this. 

 

You can use as many of these as you want. The Mycroft system will grab a random phrase from 
this list. This gives us some room for creativity, and gives the illusion that the robot is more 
intelligent than it really is. This type of response system does work quickly for us to develop our 
dialogs. 

We have to now create a skill, and fit it into the standard skills framework Mycroft uses. We will 
have to create a GitHub repository to put our skill into, and use Python to create a programming 
framework around the skill. Make sure you have a GitHub repository to put your skill into. 
Create a GitHub account if necessary (it's free). We start by forking the Mycroft Skill repository 
into our GitHub account. 

Go to the Mycroft skills GitHub web page at https://github.com/MycroftAI/mycroft- skills/. 

At the upper right, you will see three buttons: Watch, Star, and Fork. Hit the Fork button to create 
a copy of all the skills in your repository. We are going to use the skill template to make a new 
skill. Now we need to clone this repository so we can edit it. Log onto your Pi (or your 
development machine) and clone your repository. For me, it looked like this: 

git clone https://github.com/FGovers/mycroft-skills-1 

We need to create a new skill set of directories. This has to follow a specific pattern in order to 
work. We are going to copy the skill template (00  skill_template) to do this. 

cp –R 00_skill_template skill pickup_toys 

What we end up with looks like this: 

ls -l 

4 drwxrwxr-x 3 ubuntu ubuntu 4096 Jun 20 04:06 dialog 

4 -rw-rw-r-- 1 ubuntu ubuntu 2829 Jun 20 04:06  init .py 

52 -rw-rw-r-- 1 ubuntu ubuntu 49360 Jun 20 04:06 LICENSE 

4 -rw-rw-r-- 1 ubuntu ubuntu 412 Jun 20 04:06 README.md 

4 -rw-rw-r-- 1 ubuntu ubuntu 164 Jun 20 04:06 requirements.sh 

https://github.com/MycroftAI/mycroft-skills/
https://github.com/MycroftAI/mycroft-skills/
https://github.com/MycroftAI/mycroft-skills/
https://github.com/MycroftAI/mycroft-skills/
https://github.com/MycroftAI/mycroft-skills/
https://github.com/MycroftAI/mycroft-skills/
https://github.com/MycroftAI/mycroft-skills/


4 -rw-rw-r-- 1 ubuntu ubuntu 79 Jun 20 04:06 requirements.txt 

4 drwxrwxr-x 3 ubuntu ubuntu 4096 Jun 20 04:06 vocab 

The dialog directory contains subdirectories for each language you want the robot to speak, and 
contains the responses to our commands. We will use the en-us directory to put our US English 
responses, since that is what my speech system is set to. You may use it-it for Italian, and so on. 
The directories use the IETF Language Tag (Internet Engineering Task Force), which you can 
look up at https://en.wikipedia.org/wiki/IETF_language_tag. 

Other examples are de-de for German, and en-au for Australian English. 

We will create a file called pickup.toys.dialog and put our responses in it, one phrase per 
line. We can put multiple dialogs and multiple skills into a single skill category, but we will just 
put the pickup toys command in this example. 

We also have the vocab directory. This directory contains our intent phrases. These are 
identified by a .intent file. We need to create a PickupToys.intent file in the vocab/en-
us directory and put our command phrases we wrote in it: 

~/Mycroft-skills-1/skill_pickup_toys/vocab/en-us/PickupToys.intent 

Lets clean up this room  

Put Away the toys 

Pick up the toys  

Pick up all the toys  

Clean up 

Put those away  

Put this away  

Time to clean up 

Who made this mess  

mess 

toys  

clean 

You will also need to clear out the old .voc files that you got by copying the template. We can 
insert just the key words rather than the entire sentence, and the Mycroft Intent Engine will still 
activate this skill. 

Now we can populate the Python code that will activate the command to the robot. We need to 
edit the   init  .py file in the skill_pickup_toys directory that we copied from the 
template. 

We are going to import our parts from Mycroft (IntentBuilder, Mycroft Skill, getLogger, and 
intent_handler). We also import rospy, the ROS Python interface, and the ROS standard 
message String, which we use to send commands to the robot by publishing on the syscommand 

topic: 

from adapt.intent import IntentBuilder 

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag


from mycroft.skills.core import MycroftSkill from 

mycroft.util.log import getLogger 

from mycroft import intent_handler 

import rospy # ROS = Robotic Operating System 

from std_msgs.msg import String # ROS string format for messages 

 author  = 'fxgovers' 

This is the logger for Mycroft so that we can log our responses. Anything we put out to stdout, 
such as print statements, will end up in the log, or on the screen if you are in debug mode: 

LOGGER = getLogger(  name  ) 

We set up the publisher for our syscommand topic in the ROS. This is how we send commands to 
the robot control program via the ROS publish/subscribe system. We will be publishing commands 
only, and the only message format we need is String: 

pub = rospy.Publisher('/syscommand', String, queue_size=1000) 

# define our service for publishing commands to the robot control system # all 

our robot commands go out on the topic syscommand 

def pubMessage(str): 

pub.publish(str) 

 

Our Mycroft skill is created as a child object of the MycroftSkill object. We rename our skill object 
class to CleanRoomSkill: 

class CleanRoomSkill(MycroftSkill): 

def   init  (self): 

super(CleanRoomSkill, self).  init  (name="PickupToys") 

I can't explain why Mycroft has both an init method and an initialize method, but we need to 
follow the template. These commands set up the intent in the Intent Builder part of Mycroft and 
register our handler when any of our phrases are spoken. We refer to the dialogs we built earlier 
with require("CleanRoomKeyword"), so be careful that all the spelling is correct. 

def initialize(self): 

clean_room_intent = IntentBuilder("PickupToys"). \ 

require("PickupToys").build() 

self.register_intent(clean_room_intent, self.handle_clean_room_intent) 

 

This section creates our handler for when the system has recognized one of our phrases, and we 
want to perform the action for this command. This is where we kick off the publish command to 
the robot's control program via the ROS using the pubMessage function we defined earlier: 

def handle_clean_room_intent(self, message): 

self.speak_dialog("clean.up.room") pubMessage("PICK_UP_TOYS") 

The rest of the program is just housekeeping. We need to define a stop handler and finally define a 
function to create the instance of our skill: 

def stop(self): 



pass 

 
def create_skill(): 

return CleanRoomSkill() 

 

In order for our skill to work, we need to copy our directory to /opt/mycroft/skills. From 
there, we can test it in debug mode. Remember to start the ROS Core service (roscore) first to 
receive the ROS messages. 

 

 

 

 


